Stochastic heat equation with rough multiplicative noise

David Nualart

Department of Mathematics
Kansas University

Conference in honor of Professor VLAD BALLY
Stochastic Calculus, Monte Carlo Methods and Mathematical Finance October 6-9, 2015

Joint work with Yaozhong Hu, Jingyu Huang, Khoa Lê and Samy Tindel http://arxiv.org/pdf/1505.04924.pdf

Stochastic heat equation with rough noise

Consider the one-dimensional stochastic heat equation on \mathbb{R} :

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\frac{\kappa}{2} \frac{\partial^{2} u}{\partial x^{2}}+\sigma(u) \frac{\partial^{2} W}{\partial x \partial t}, \tag{1}
\end{equation*}
$$

with initial condition u_{0}, where $\kappa>0$ is a fixed parameter.

Stochastic heat equation with rough noise

Consider the one-dimensional stochastic heat equation on \mathbb{R} :

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\frac{\kappa}{2} \frac{\partial^{2} u}{\partial x^{2}}+\sigma(u) \frac{\partial^{2} W}{\partial x \partial t}, \tag{1}
\end{equation*}
$$

with initial condition u_{0}, where $\kappa>0$ is a fixed parameter.

- The noise $W=\{W(t, x), t \geq 0, x \in \mathbb{R}\}$ is a centered Gaussian process with covariance given by

$$
E(W(s, x) W(t, y))=(s \wedge t) \frac{1}{2}\left(|x|^{2 H}+|y|^{2 H}-|x-y|^{2 H}\right)
$$

with $\frac{1}{4}<H<\frac{1}{2}$. That is, W is a Brownian motion in time and a fractional Brownian motion with Hurst parameter H in space.

Stochastic heat equation with rough noise

Consider the one-dimensional stochastic heat equation on \mathbb{R} :

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\frac{\kappa}{2} \frac{\partial^{2} u}{\partial x^{2}}+\sigma(u) \frac{\partial^{2} W}{\partial x \partial t}, \tag{1}
\end{equation*}
$$

with initial condition u_{0}, where $\kappa>0$ is a fixed parameter.

- The noise $W=\{W(t, x), t \geq 0, x \in \mathbb{R}\}$ is a centered Gaussian process with covariance given by

$$
E(W(s, x) W(t, y))=(s \wedge t) \frac{1}{2}\left(|x|^{2 H}+|y|^{2 H}-|x-y|^{2 H}\right)
$$

with $\frac{1}{4}<H<\frac{1}{2}$. That is, W is a Brownian motion in time and a fractional Brownian motion with Hurst parameter H in space.

- The covariance of $\frac{\partial^{2} W}{\partial x \partial t}$ equals to $H(2 H-1) \delta_{0}(t-s)|x-y|^{2 H-2}$, is NOT locally integrable in space when $H<\frac{1}{2}$.

Stochastic integration with respect to W

 Integration of deterministic functions:- Let \mathcal{H} be the closure of $\mathcal{D}((0, \infty) \times \mathbb{R})$ under the semi-norm

$$
\|f\|_{\mathcal{H}}^{2}=c_{1, H} \int_{0}^{\infty} \int_{\mathbb{R}^{2}}|f(s, x+y)-f(s, x)|^{2}|y|^{2 H-2} d x d y d s
$$

where $c_{1, H}=H(1-2 H) / 2$.

- Using the Fourier transform in the space variable yields

Stochastic integration with respect to W

 Integration of deterministic functions:- Let \mathcal{H} be the closure of $\mathcal{D}((0, \infty) \times \mathbb{R})$ under the semi-norm

$$
\|f\|_{\mathcal{H}}^{2}=c_{1, H} \int_{0}^{\infty} \int_{\mathbb{R}^{2}}|f(s, x+y)-f(s, x)|^{2}|y|^{2 H-2} d x d y d s
$$

where $c_{1, H}=H(1-2 H) / 2$.

- The space \mathcal{H} is isometric to the Gaussian space spanned by W : the mapping $\mathbf{1}_{[0, t] \times[0, x]} \mapsto W\left(\mathbf{1}_{[0, t] \times[0, x]}\right)=W(t, x)$ can be extended to \mathcal{H}, and $E\left(W(f)^{2}\right)=\|f\|_{\mathcal{H}}^{2}$.
- Using the Fourier transform in the space variable yields

Stochastic integration with respect to W

 Integration of deterministic functions:- Let \mathcal{H} be the closure of $\mathcal{D}((0, \infty) \times \mathbb{R})$ under the semi-norm

$$
\|f\|_{\mathcal{H}}^{2}=c_{1, H} \int_{0}^{\infty} \int_{\mathbb{R}^{2}}|f(s, x+y)-f(s, x)|^{2}|y|^{2 H-2} d x d y d s
$$

where $c_{1, H}=H(1-2 H) / 2$.

- The space \mathcal{H} is isometric to the Gaussian space spanned by W : the mapping $\mathbf{1}_{[0, t] \times[0, x]} \mapsto W\left(\mathbf{1}_{[0, t] \times[0, x]}\right)=W(t, x)$ can be extended to \mathcal{H}, and $E\left(W(f)^{2}\right)=\|f\|_{\mathcal{H}}^{2}$.
- Using the Fourier transform in the space variable yields

$$
E\left(W(f)^{2}\right)=c_{2, H} \int_{0}^{\infty} \int_{\mathbb{R}}|\mathcal{F} f(s, \xi)|^{2}|\xi|^{1-2 H} d \xi d s
$$

where $c_{2, H}=\frac{1}{2 \pi} \Gamma(2 H+1) \sin (\pi H)$.

- $\mu(d \xi)=|\xi|^{1-2 H} d \xi$ is the spatial spectral measure. Its Fourier transform is not a function when $H<\frac{1}{2}$.

Integration of predictable processes:

- Let \mathcal{F}_{t} be the filtration generated by W up to time t. An elementary predictable process u is given by:

$$
u(s, x)=\sum_{i=1}^{n} X_{i} \mathbf{1}_{\left(a_{i}, b_{i}\right]}(s) \varphi_{i}(x),
$$

where $0 \leq a_{1}<b_{1}<\cdots<a_{n}<b_{n}<\infty, \varphi_{i} \in \mathcal{D}(\mathbb{R})$ and X_{i} is $\mathcal{F}_{a_{i}}$-measurable and bounded, for $i=1, \ldots, n$.

Integration of predictable processes:

- Let \mathcal{F}_{t} be the filtration generated by W up to time t. An elementary predictable process u is given by:

$$
u(s, x)=\sum_{i=1}^{n} X_{i} \mathbf{1}_{\left(a_{i}, b_{i}\right]}(s) \varphi_{i}(x),
$$

where $0 \leq a_{1}<b_{1}<\cdots<a_{n}<b_{n}<\infty, \varphi_{i} \in \mathcal{D}(\mathbb{R})$ and X_{i} is $\mathcal{F}_{a_{i}}$-measurable and bounded, for $i=1, \ldots, n$.

- For such process we define

$$
\int_{0}^{\infty} \int_{\mathbb{R}} u(s, x) W(d s, d x)=\sum_{i=1}^{n} X_{i} W\left(\mathbf{1}_{\left(a_{i}, b_{i}\right]} \otimes \varphi_{i}\right)
$$

Proposition

Let Λ_{H} be the space of predictable processes g such that $E\left[\|g\|_{\mathcal{H}}^{2}\right]<\infty$. Then,
(i) The space of elementary predictable processes is dense in Λ_{H}.
(ii) The stochastic integral can be extended to Λ_{H}, and we have:

$$
E\left(\left|\int_{0}^{\infty} \int_{\mathbb{R}} g(s, x) W(d s, d x)\right|^{2}\right)=E\left[\|g\|_{\mathcal{H}}^{2}\right]
$$

Mild solution

- We denote by $p_{t}(x)=\frac{1}{\sqrt{2 \pi \kappa t}} e^{-x^{2} / 2 \kappa t}$ the heat kernel.

Definition

Let $u=\{u(t, x), t \geq 0, x \in \mathbb{R}\}$ be a real-valued predictable stochastic process such that for all $t \geq 0$ and $x \in \mathbb{R}$ the process

$$
\left\{p_{t-s}(x-y) u(s, y) \mathbf{1}_{[0, t]}(s), 0 \leq s \leq t, y \in \mathbb{R}\right\}
$$

is an element of Λ_{H}. We say that u is a mild solution of (1) if for all $t \geq 0$ and $x \in \mathbb{R}$ we have:

$$
u(t, x)=p_{t} u_{0}(x)+\int_{0}^{t} \int_{\mathbb{R}} p_{t-s}(x-y) \sigma(u(s, y)) W(d s, d y)
$$

A stochastic Young inequality I

- For $p \geq 1$ define

$$
\|u\|_{\mathcal{X}_{T}^{p}}^{2}=\sup _{\substack{t \in[0, T] \\ x \in \mathbb{R}}}\left(\|u(t, x)\|_{L^{p}(\Omega)}^{2}+\int_{\mathbb{R}} \frac{\|u(t, x)-u(t, x+y)\|_{L^{p}(\Omega)}^{2}}{|y|^{2-2 H}} d y\right)
$$

- Define the stochastic convolution of a predictable process Z as

A stochastic Young inequality I

- For $p \geq 1$ define

$$
\|u\|_{\mathcal{X}_{T}^{p}}^{2}=\sup _{\substack{t \in[0, T] \\ x \in \mathbb{R}}}\left(\|u(t, x)\|_{L^{p}(\Omega)}^{2}+\int_{\mathbb{R}} \frac{\|u(t, x)-u(t, x+y)\|_{L^{p}(\Omega)}^{2}}{|y|^{2-2 H}} d y\right)
$$

- Define the stochastic convolution of a predictable process Z as

$$
(p * Z W)(t, x)=\int_{0}^{t} \int_{\mathbb{R}} p_{t-s}(x-y) Z(s, y) W(d s, d y)
$$

A stochastic Young inequality I

- For $p \geq 1$ define

$$
\|u\|_{\mathcal{X}_{T}^{p}}^{2}=\sup _{\substack{t \in[0, T \\ x \in \mathbb{R}}}\left(\|u(t, x)\|_{L^{\rho}(\Omega)}^{2}+\int_{\mathbb{R}} \frac{\|u(t, x)-u(t, x+y)\|_{L^{\rho}(\Omega)}^{2}}{|y|^{2-2 H}} d y\right) .
$$

- Define the stochastic convolution of a predictable process Z as

$$
(p * Z W)(t, x)=\int_{0}^{t} \int_{\mathbb{R}} p_{t-s}(x-y) Z(s, y) W(d s, d y)
$$

Proposition

For any $p \geq 2$,

$$
\begin{equation*}
\| p * Z W)\left\|_{\mathcal{X}_{T}^{p}} \leq C_{T, H} \sqrt{p}\right\| Z \|_{\mathcal{X}_{T}^{p}} . \tag{2}
\end{equation*}
$$

Sketch of the proof:
(i) Using Burkholder's inequality,

$$
\begin{aligned}
& \|(p * Z W)(t, x)\|_{L^{p}(\Omega)} \\
& \leq C \sqrt{p} \| \int_{0}^{t} \int_{\mathbb{R}^{2}}\left(p_{t-s}(x-y) Z(s, y)-p_{t-s}(x-y-z) Z(s, y+z)\right)^{2} \\
& \times|z|^{2 H-2} d y d z d s \|_{L^{\frac{p}{2}}(\Omega)}^{\frac{1}{2}} .
\end{aligned}
$$

(ii) The estimate follows using Minkowski's inequality and Fourier transform arguments.
(iii) In the same way we handle the term

$$
\int_{\mathbb{R}} \frac{\|(p * Z W)(t, x)-(p * Z W)(t, x+y)\|_{L^{p}(\Omega)}}{|y|^{2-2 H}} d y .
$$

Existence and uniqueness in the affine case

Theorem (Balan, Jolis, Quer-Sardanyons '15)
Suppose that $\frac{1}{4}<H<\frac{1}{2}$ and
(i) u_{0} is bounded and H -Hölder continuous.
(ii) $\sigma(u)=a u+b$.

Then, there is a unique mild solution to equation (1) in \mathcal{X}_{T}^{2}. Moreover, the solution is $L^{2}(\Omega)$-continuous and for each $p \geq 2$ it belongs to \mathcal{X}_{T}^{p}.

- If σ is an affine function, then, if u and v are two solutions,

$$
\begin{aligned}
& \sigma(u(s, y))-\sigma(v(s, y)-\sigma(u(s, y+z))+\sigma(v(s, y+z)) \\
& =a[u(s, y)-v(s, y)-u(s, y+z)+v(s, y+z)] .
\end{aligned}
$$

A stochastic Young inequality II

- For $p \geq 1$ define

$$
\|u\|_{\mathcal{Z}_{T}^{p}}^{2}=\sup _{t \in[0, T]}\left(\|u(t, \cdot)\|_{L^{p}(\Omega \times \mathbb{R})}^{2}+\int_{\mathbb{R}} \frac{\|u(t, \cdot)-u(t, \cdot+y)\|_{L^{p}(\Omega \times \mathbb{R})}^{2}}{|y|^{2-2 H}} d y\right)
$$

- The proof is based on the convolution argument as in Gyongy-N. '99.

A stochastic Young inequality II

- For $p \geq 1$ define

$$
\|u\|_{\mathcal{Z}_{T}^{p}}^{2}=\sup _{t \in[0, T]}\left(\|u(t, \cdot)\|_{L^{p}(\Omega \times \mathbb{R})}^{2}+\int_{\mathbb{R}} \frac{\|u(t, \cdot)-u(t, \cdot+y)\|_{L^{p}(\Omega \times \mathbb{R})}^{2}}{|y|^{2-2 H}} d y\right) .
$$

Proposition

$$
\begin{equation*}
E\left(\sup _{\substack{t \in[0, \Gamma \\ x \in \mathbb{R}}} \int_{\mathbb{R}} \frac{|p * Z W(t, x)-p * Z W(t, x+y)|^{2}}{|y|^{2-2 H}} d y\right)^{\frac{p}{2}} \leq C_{T, H, p}\|Z\|_{Z_{T}^{p}} \tag{3}
\end{equation*}
$$

- The proof is based on the convolution argument as in Gyongy-N. '99.

Uniqueness of solutions

Theorem

Suppose that $\frac{1}{4}<H<\frac{1}{2}$ and:
(i) $u_{0} \in L^{p}(\mathbb{R})$ for $p>\frac{6}{4 H-1}$.
(ii) σ has a Lipschitz derivative and $\sigma(0)=0$.

Then, if u and v are two solutions in the space \mathcal{Z}_{T}^{p}, for each t, x, $u(t, x)=v(t, x)$ almost surely.

Main ingredients of the proof:

- Given two solutions u, v, we need to estimate a double increment of the form

$$
\begin{aligned}
& \mid \sigma(u(s, y))-\sigma(v(s, y)-\sigma(u(s, y+z))+\sigma(v(s, y+z)) \mid \\
& \leq C|u(s, y)-v(s, y)-u(s, y+z)+v(s, y+z)| \\
& +C|u(s, y)-v(s, y)|[|u(s, y)-u(s, y+z)|+|v(s, y)-v(s, y+z)|] .
\end{aligned}
$$

- To handle the product term, we need a stopping time argument:

$$
T_{k}=\inf \left\{0 \leq t \leq T: \sup _{0 \leq s \leq t, y \in \mathbb{R}} \int_{\mathbb{R}}|u(s, y)-u(s, y+z)|^{2}|z|^{2 H-2} d z \geq k\right\}
$$

- Using inequality (3) we can show that $T_{k} \uparrow \infty$, a.s. as $k \rightarrow \infty$.

Existence of solutions

Theorem

Suppose that σ satisfies (ii) and u_{0} satisfies:
(i) For $p>\frac{6}{4 H-1}, u_{0} \in L^{p}(\mathbb{R}) \cap L^{\infty}(\mathbb{R}) \cap C^{H}(\mathbb{R})$ and

$$
\int_{\mathbb{R}}\left\|u_{0}(\cdot)-u_{0}(\cdot+y)\right\|_{L^{\rho}(\mathbb{R})}|y|^{2 H-2} d y<\infty .
$$

Then there exists a unique solution in $\mathcal{Z}_{T}^{p} \cap \mathcal{X}_{T}^{p}$.

- The proof uses a compactness argument on the set of probabilities in space of continuous functions $f \in C([0, T] \times \mathbb{R})$ such that $(t, x) \mapsto \int_{|y| \leq 1}|f(t, x+y)-f(t, x)||y|^{2 H-2} d y$ is finite and continuous and for all $R>0$
$\lim _{\substack{z \downarrow 0}} \sup _{\substack{t \in[0, T) \\ x \in \mid-, \rightarrow,]]}} \int_{|y| \leq 1}|f(t, x+z)-f(t, x)-f(t, x+y)+f(t, x+z+y)||y|^{2 H-2} d y=0$.

Moment estimates

The solution satisfies

$$
\sup _{x \in \mathbb{R}}\|u(t, x)\|_{L^{\rho}(\Omega)} \leq C_{L_{0}} \exp \left(C t p^{\frac{1}{H}} \kappa^{1-\frac{1}{H}}\|\sigma\|_{L i p}^{\frac{2}{H}}\right)
$$

Moment estimates

The solution satisfies

$$
\sup _{x \in \mathbb{R}}\|u(t, x)\|_{L^{p}(\Omega)} \leq C_{u_{0}} \exp \left(C t p^{\frac{1}{H}} \kappa^{1-\frac{1}{H}}\|\sigma\|_{L i p}^{\frac{2}{H}}\right)
$$

and

$$
E u(t, x)^{2} \geq C \frac{\left|p_{t} u_{0}(x)\right|^{3}}{\left\|u_{0}\right\|_{L^{\infty}}} \exp \left(C t \kappa^{1-\frac{1}{H}} \sigma_{*}^{\frac{2}{H}}\right)
$$

where $\sigma_{*}=\inf _{u \in \mathbb{R}} \frac{|\sigma(u)|}{|u|}$.

- The upper bound follows from

$$
\| p * Z W)\left\|_{\mathcal{X}_{\theta, \epsilon}^{p}} \leq C_{0} \sqrt{p} \mid Z\right\|_{\mathcal{X}_{\theta, \epsilon}^{p}}\left(\kappa^{\frac{H}{2}-\frac{1}{2}} \theta^{-\frac{H}{2}}+\epsilon^{-1} \kappa^{-\frac{1}{4}} \theta^{-\frac{1}{4}}+\epsilon \kappa^{H-\frac{3}{4}} \theta^{\frac{1}{4}-H}\right)
$$

where for any $p \geq 2, \theta, \epsilon>0$,

$$
\begin{aligned}
\|u\|_{\mathcal{X}_{\theta, \epsilon}^{p}}= & \sup _{\substack{t \geq 0 \\
x \in \mathbb{R}}} e^{-\theta t}\|u(t, x)\|_{L^{p}(\Omega)} \\
& \quad+\epsilon \sup _{\substack{t \geq 0 \\
x \in \mathbb{R}}} e^{-\theta t}\left(\int_{\mathbb{R}}\|u(t, x+y)-u(t, x)\|_{L^{p}(\Omega)}^{2}|y|^{2 H-2} d y\right)^{\frac{1}{2}} .
\end{aligned}
$$

- The upper bound follows from

$$
\| p * Z W)\left\|_{\mathcal{X}_{\theta, \epsilon}^{p}} \leq C_{0} \sqrt{p} \mid Z\right\|_{\mathcal{X}_{\theta, \epsilon}^{p}}\left(\kappa^{\frac{H}{2}-\frac{1}{2}} \theta^{-\frac{H}{2}}+\epsilon^{-1} \kappa^{-\frac{1}{4}} \theta^{-\frac{1}{4}}+\epsilon \kappa^{H-\frac{3}{4}} \theta^{\frac{1}{4}-H}\right)
$$

where for any $p \geq 2, \theta, \epsilon>0$,

$$
\begin{aligned}
\|u\|_{\mathcal{X}_{\theta, \epsilon}^{p}}= & \sup _{\substack{t \geq 0 \\
x \in \mathbb{R}}} e^{-\theta t}\|u(t, x)\|_{L^{p}(\Omega)} \\
& \quad+\epsilon \sup _{\substack{t \geq 0 \\
x \in \mathbb{R}}} e^{-\theta t}\left(\int_{\mathbb{R}}\|u(t, x+y)-u(t, x)\|_{L^{p}(\Omega)}^{2}|y|^{2 H-2} d y\right)^{\frac{1}{2}} .
\end{aligned}
$$

- The lower bound follows from the Sobolev embedding inequality

$$
\int_{\mathbb{R}^{2}}|g(x+y)-g(x)|^{2}|y|^{2 H-2} d y d x \geq c\|g\|_{L^{\frac{1}{H}(\mathbb{R})}}^{2}
$$

Parabolic Anderson model

Suppose $\sigma(u)=u$, that is

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\frac{\kappa}{2} \frac{\partial^{2} u}{\partial x^{2}}+u \frac{\partial^{2} W}{\partial x \partial t} \tag{4}
\end{equation*}
$$

Parabolic Anderson model

Suppose $\sigma(u)=u$, that is

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\frac{\kappa}{2} \frac{\partial^{2} u}{\partial x^{2}}+u \frac{\partial^{2} W}{\partial x \partial t} \tag{4}
\end{equation*}
$$

- The random field $v=\log u$ satisfies formally the KPZ equation:

$$
\frac{\partial v}{\partial t}=\frac{\kappa}{2} \frac{\partial^{2} v}{\partial x^{2}}+\frac{1}{2} v \frac{\partial v}{\partial x}+\frac{\partial^{2} W}{\partial x \partial t}
$$

Wiener chaos expansion

- For any fixed (t, x) the random variable $u(t, x)$ admits the following Wiener chaos expansion

$$
u(t, x)=\sum_{n=0}^{\infty} I_{n}\left(f_{n}(\cdot, t, x)\right)
$$

where for each $(t, x), f_{n}(\cdot, t, x)$ is a symmetric element in $\mathcal{H}^{\otimes n}$.
Taking into account that the Itô and Skorohod's integrals coincide for processes in Λ_{H} and using an iteration procedure, one can find
where σ denotes the permutation of $\{1,2, \ldots, n\}$ such that

Wiener chaos expansion

- For any fixed (t, x) the random variable $u(t, x)$ admits the following Wiener chaos expansion

$$
u(t, x)=\sum_{n=0}^{\infty} I_{n}\left(f_{n}(\cdot, t, x)\right),
$$

where for each $(t, x), f_{n}(\cdot, t, x)$ is a symmetric element in $\mathcal{H}^{\otimes n}$.

- Taking into account that the Itô and Skorohod's integrals coincide for processes in Λ_{H} and using an iteration procedure, one can find

$$
\begin{aligned}
f_{n}\left(s_{1}, x_{1}, \ldots, s_{n}, x_{n}, t, x\right)= & \frac{1}{n!} p_{t-s_{\sigma(n)}}\left(x-x_{\sigma(n)}\right) \\
& \cdots p_{s_{\sigma(2)}-s_{\sigma(1)}}\left(x_{\sigma(2)}-x_{\sigma(1)}\right) p_{s_{\sigma(1)}} u_{0}\left(x_{\sigma(1)}\right)
\end{aligned}
$$

where σ denotes the permutation of $\{1,2, \ldots, n\}$ such that $0<s_{\sigma(1)}<\cdots<s_{\sigma(n)}<t$.

Theorem
Assume $\frac{1}{4}<H<\frac{1}{2}$. Suppose that for any $a>0$,

$$
\int_{\mathbb{R}} e^{-a x^{2}}\left|u_{0}(x)\right| d x<\infty .
$$

Then, there is a unique mild solution to equation (4).

Theorem

Assume $\frac{1}{4}<H<\frac{1}{2}$. Suppose that for any $a>0$,

$$
\int_{\mathbb{R}} e^{-a x^{2}}\left|u_{0}(x)\right| d x<\infty .
$$

Then, there is a unique mild solution to equation (4).
Sketch of the proof: Suppose $u_{0}=1$.

- It suffices to show that

$$
\sum_{n=0}^{\infty} n!\left\|f_{n}(\cdot, t, x)\right\|_{\mathcal{H}^{\otimes n}}^{2} \leq \sum_{n=0}^{\infty} \frac{c^{n} t^{n H} \kappa^{n(H-1)}}{\Gamma(n H+1)}<\infty .
$$

- Using

$$
\begin{aligned}
\mathcal{F} f_{n}\left(s_{1}, \xi_{1}, \ldots, s_{n}, \xi_{n}, t, x\right)= & \frac{c_{2, H}^{n}}{n!} \prod_{i=1}^{n} e^{-\frac{\kappa}{2}\left(s_{\sigma(i+1)}-s_{\sigma(i)}\right)\left|\xi_{\sigma(i)}+\cdots+\xi_{\sigma(1)}\right|^{2}} \\
& \times e^{-i x\left(\xi_{\sigma(i)}+\cdots+\xi_{\sigma(i)}\right)},
\end{aligned}
$$

we obtain

$$
\begin{aligned}
& \left\|f_{n}(\cdot, t, x)\right\|_{\mathcal{H} \otimes n}^{2}=\frac{c_{2, H}^{2 n}}{(n!)^{2}} \int_{[0, t]^{n}} \int_{\mathbb{R}^{n}} \prod_{i=1}^{n} e^{-\kappa\left(s_{\sigma(i+1)}-s_{\sigma(i)}\right)\left|\xi_{i}+\cdots+\xi_{1}\right|^{2}}\left|\xi_{i}\right|^{1-2 H} d \xi d s \\
& \quad=\frac{c_{2, H}^{2 n}}{(n!)^{2}} \int_{[0, t]^{n}} \int_{\mathbb{R}^{n}} \prod_{i=1}^{n} e^{-\kappa\left(s_{\sigma(i+1)}-s_{\sigma(i)}\right) \eta_{i}^{2}}\left|\eta_{i}-\eta_{i-1}\right|^{1-2 H} d \eta d s \\
& \quad \leq \frac{c_{2, H}^{2 n}}{(n!)^{2}} \int_{[0, t]^{n}} \int_{\mathbb{R}^{n}} \prod_{i=1}^{n} e^{-\kappa\left(s_{\sigma(i+1)}-s_{\sigma(i)}\right) \eta_{i}^{2}}\left(\left|\eta_{i}\right|^{1-2 H}+\left|\eta_{i-1}\right|^{1-2 H}\right) d \eta d s .
\end{aligned}
$$

Then, we use

$$
\int_{\mathbb{R}} e^{-\kappa S \eta^{2}}|\eta|^{2-4 H} d \eta=c s^{-\frac{1}{2}(3-4 H)}
$$

and $\frac{3-4 H}{2}<1$ if and only if $H>\frac{1}{4}$.

Moment bounds

Theorem

Let $\frac{1}{4}<H<\frac{1}{2}$, and consider the solution u to equation (4) with $u_{0}=1$. Let $p \geq 2$ be an integer. Then

$$
\exp \left(c_{1} t p^{1+\frac{1}{H}} \kappa^{1-\frac{1}{H}}\right) \leq E\left(u(t, x)^{p}\right) \leq \exp \left(c_{2} t p^{1+\frac{1}{H}} \kappa^{1-\frac{1}{H}}\right) .
$$

- These bounds coincide with those obtained in the case $H \geq \frac{1}{2}$ (Khoshnevisan et al.), and also with the upper bound in the case of a general σ.

Proof of the upper bound:

- It follows from the hypercontractivity property

$$
\left\|I_{n}\left(f_{n}(\cdot, t, x)\right)\right\|_{L^{p}(\Omega)} \leq(p-1)^{\frac{n}{2}}\left\|I_{n}\left(f_{n}(\cdot, t, x)\right)\right\|_{L^{2}(\Omega)},
$$

and the estimate

$$
\left\|I_{n}\left(f_{n}(\cdot, t, x)\right)\right\|_{L^{2}(\Omega)} \leq \frac{C^{\frac{n}{2}} t^{\frac{n H}{2}} \kappa^{\frac{n(H-1)}{2}}}{[\Gamma(n H+1)]^{\frac{1}{2}}},
$$

which yields

$$
\|u(t, x)\|_{L^{p}(\Omega)} \leq \sum_{n=0}^{\infty} \frac{c^{\frac{n}{2}} p^{\frac{n}{2}} t^{\frac{n H}{2}} \kappa^{\frac{n(H-1)}{2}}}{(\Gamma(n H+1))^{\frac{1}{2}}} \leq \exp \left(c_{2} p^{\frac{1}{H}} t \kappa^{1-\frac{1}{H}}\right) .
$$

Proof of the lower bound:

- We introduce an approximation of the noise given by

$$
W^{\varepsilon}(\varphi)=\int_{0}^{t} \int_{\mathbb{R}}\left[p_{\varepsilon} * \varphi\right](s, x) W(d s, d y)
$$

- Let u^{ε} be the solution to the approximate equation

$$
u^{\varepsilon}(t, x)=p_{t} u_{0}(x)+\int_{0}^{t} \int_{\mathbb{R}} p_{t-s}(x-y) u^{\varepsilon}(s, y) W^{\varepsilon}(d s, d y)
$$

where B is a p-dimensional Brownian motion independent of W

Proof of the lower bound:

- We introduce an approximation of the noise given by

$$
W^{\varepsilon}(\varphi)=\int_{0}^{t} \int_{\mathbb{R}}\left[p_{\varepsilon} * \varphi\right](s, x) W(d s, d y)
$$

- Let u^{ε} be the solution to the approximate equation

$$
u^{\varepsilon}(t, x)=p_{t} u_{0}(x)+\int_{0}^{t} \int_{\mathbb{R}} p_{t-s}(x-y) u^{\varepsilon}(s, y) W^{\varepsilon}(d s, d y)
$$

Proposition (Feynman-Kac formula for the moments)

For each $p \geq 2, E\left[u(t, x)^{p}\right]=\lim _{\varepsilon \downarrow 0} E\left[u^{\varepsilon}(t, x)^{p}\right]$, and

$$
E\left[u^{\varepsilon}(t, x)^{p}\right]=E_{B}\left[\exp \left(c_{2, H} \sum_{1 \leq i<j \leq p} \int_{0}^{t} \int_{\mathbb{R}} e^{-\varepsilon \xi^{2}+i \xi\left(B_{r}^{i}-B_{r}^{i}\right)}|\xi|^{1-2 H} d \xi d r\right)\right],
$$

where B is a p-dimensional Brownian motion independent of W.

- Step 1: Include the diagonal elements:

$$
E\left[u^{\varepsilon}(t, x)^{p}\right]=E_{B}\left[\exp \left(c \int_{0}^{t} \int_{\mathbb{R}} e^{-\varepsilon \xi^{2}}\left|\sum_{j=1}^{p} e^{i \xi B_{r}^{\prime}}\right|^{2}|\xi|^{1-2 H} d \xi d r-c p t \varepsilon^{H-1}\right)\right]
$$

- Step 2: Reduce the expectation to the event:

$$
A_{\varepsilon}=\left\{\sup _{1 \leq j \leq p} \sup _{0 \leq r \leq t}\left|B_{r}^{j}\right| \leq \frac{\pi}{3} \varepsilon^{\frac{1-H}{2}}\right\},
$$

which satisfies $P\left(A_{\varepsilon}\right) \geq c e^{-c \varepsilon^{H-1} p t}$.
On A_{ε}, assuming $|\xi| \leq \varepsilon^{\frac{H-1}{2}}$, we have $\left|\sum_{j=1}^{p} e^{i B_{r}^{j} \xi}\right| \geq c p$.

- Step 3: As a consequence

$$
E\left[u^{\varepsilon}(t, x)^{p}\right] \geq \exp \left(c p^{2} t \varepsilon^{-(1-H)^{2}}-c p t \varepsilon^{H-1}\right)
$$

- Step 4: Choosing $\varepsilon=c p^{\frac{1}{}(H-1)}$ and using

$$
E\left[u^{\varepsilon}(t, x)^{p}\right] \leq E\left[u(t, x)^{p}\right]
$$

we get the desired bound.

Spatial asymptotics

Work in progress with X. Chen, Y. Hu and S. Tindel

- For $t \geq 0$ fixed, we claim that

$$
\lim _{R \rightarrow \infty}(\log R)^{-\frac{1}{1+H}} \log \left(\max _{|x| \leq R} u(t, x)\right)=C_{H}(t \mathcal{E})^{\frac{H}{1+H}}
$$

almost surely, where

$$
\mathcal{E}=\sup _{g}\left\{\int_{\mathbb{R}}\left|\mathcal{F} g^{2}(\xi)\right|^{2}|\xi|^{1-2 H} d \xi-\frac{1}{2} \int_{\mathbb{R}}\left|g^{\prime}(x)\right|^{2} d x\right\}
$$

and the supremum is over $\left\{g \in L^{2}(\mathbb{R}):\|g\|_{L^{2}(\mathbb{R})}=1, g^{\prime} \in L^{2}(\mathbb{R})\right\}$.

- This means that $v(t, x)=\log u(t, x)$ (solution to the KPZ equation) satisfies

$$
\lim _{R \rightarrow \infty} \frac{\max _{|x| \leq R} v(t, x)}{(\log R)^{\frac{1}{1+H}}}=C_{H}(t \mathcal{E})^{\frac{H}{1+H}} .
$$

Note that $\frac{1}{1+H}=\frac{2}{3}$ if $H=\frac{1}{2}$.

Thanks for your attention!

Bon anniversaire pour Vlad!

