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Stochastic heat equation with rough noise

Consider the one-dimensional stochastic heat equation on R:

u kK d%u 9PwW

ot~ 20xe T Woar M

with initial condition ug, where k > 0 is a fixed parameter.
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Stochastic heat equation with rough noise

Consider the one-dimensional stochastic heat equation on R:

@—E@—i— (u)82W
ot 20x2 " \YWoxat

with initial condition ug, where k > 0 is a fixed parameter.

(1)
@ The noise W = {W(t,x),t > 0,x € R} is a centered Gaussian process
with covariance given by
1
E(W(s, x)W(t,y)) = (s A D)5 (X + [y =[x = y[*)

with I < H < J. Thatis, W is a Brownian motion in time and a fractional
Brownian motion with Hurst parameter H in space.
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Stochastic heat equation with rough noise

Consider the one-dimensional stochastic heat equation on R:

@_5@4_ (u)82W (1)
ot 2ax2 "\ oxar
with initial condition ug, where k > 0 is a fixed parameter.

@ The noise W = {W(t,x),t > 0,x € R} is a centered Gaussian process
with covariance given by

E(W(s,x)W(t,y)) = (s A l‘)%(lxle + |y [P = |x = y[2)

with I < H < J. Thatis, W is a Brownian motion in time and a fractional
Brownian motion with Hurst parameter H in space.

@ The covariance of 2% equals to H(2H — 1)do(t — 8)|x — y[2H2, is NOT
locally integrable in space when H < %
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Stochastic integration with respect to W
Integration of deterministic functions:

@ Let H be the closure of D((0, 00) x R) under the semi-norm

118 = oum [ [ Hsxy) = f(s.x) Iy P2l

where ¢y = H(1 — 2H)/2.
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Stochastic integration with respect to W
Integration of deterministic functions:

@ Let H be the closure of D((0, 00) x R) under the semi-norm

118 = oum [ [ Hsxy) = f(s.x) Iy P2l

where ¢y = H(1 — 2H)/2.

@ The space H is isometric to the Gaussian space spanned by W: the
mapping 1o, gx[0,x] — W(1j0,qx[0,x)) = W(t, x) can be extended to #,
and E(W(f)?) = [ f[}3,.
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Stochastic integration with respect to W
Integration of deterministic functions:

@ Let H be the closure of D((0, 00) x R) under the semi-norm

15 = e [ [ 1Fs.x+ )~ fls. 01y 2y

where ¢y = H(1 — 2H)/2.

@ The space H is isometric to the Gaussian space spanned by W: the
mapping 1o, gx[0,x] — W(1j0,qx[0,x)) = W(t, x) can be extended to #,
and E(W(f)?) = |If[3.

@ Using the Fourier transform in the space variable yields
EW() = con | [ 1Ff(s.€)Plel" 2 deds
0 R

where ¢,y = 2-T'(2H + 1) sin(rH).

@ ;(dg) = |¢]'~2Hd¢ is the spatial spectral measure. lts Fourier transform
is not a function when H < 3.
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Integration of predictable processes:

@ Let F; be the filtration generated by W up to time t. An elementary
predictable process u is given by:

n
U(S, X) = Z )(/1(ai,bi](s)90/'(x)7
i=1

where 0 < a1 < by <--- < ap < by < o0, pj € D(R) and X; is
Fa-measurable and bounded, fori=1,...,n.

David Nualart (Kansas University) Le Mans, October 6-9, 2015 4/26



Integration of predictable processes:

@ Let F; be the filtration generated by W up to time t. An elementary
predictable process u is given by:

n
u(s, x) =D Xil(ab)(8)pi(X),
i=1
where 0 < a1 < by <--- < ap < by < o0, pj € D(R) and X; is

Fa-measurable and bounded, fori=1,...,n.

@ For such process we define

o0 n
/ / u(s, x)W(ds, dx) = > XiW(1 (g1 @ @i).
o JR i=1
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Proposition

Let Ay be the space of predictable processes g such that
Elllgl|3,] < co. Then,

(i) The space of elementary predictable processes is dense in Ay.
(i) The stochastic integral can be extended to Ay, and we have:

E ( | [ ats.xwids.an 2) — £ [llgl]
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Mild solution

© We denote by p(x) = —z=e~*"/2"! the heat kernel.

Definition
Let u= {u(t, x),t > 0, x € R} be a real-valued predictable stochastic process
such that for all t > 0 and x € R the process

{pr—s(x = y)u(s,y)1p,g(s),0 < s <ty eR}

is an element of Ay. We say that u is a mild solution of (1) if for all £ > 0 and
x € R we have:

t
u(t, X) = prtio(x) + /0 / Pr_s(X — y)o(u(s, y))W(ds, dy).
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A stochastic Young inequality |

@ For p > 1 define

“U(t, X) — U(t,X—l—y)”%p Q

2 2 (£

u = Sup u(t, x +/ d .
|| ||)('_l}7 re.7] <|| ( )”LP(SZ) |y|2_2H y

X€ER
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A stochastic Young inequality |

@ For p > 1 define

HU(t, X) U(t7X y)”ip Q

2 2 (£

u = Sup u(t, x +/ d .
|| ||X7"3 re.7] <|| ( )HLP(S)) |y|2_2H y

X€ER

@ Define the stochastic convolution of a predictable process Z as

t
(p+ ZW)(t, x) = /0 /R Pr_s(x — ¥)Z(s.y)W(ds. dy).

David Nualart (Kansas University) Le Mans, October 6-9, 2015 7126



A stochastic Young inequality |

@ For p > 1 define

HU(t, X) U(t7X y)”%P Q

2 2 (£

u = Sup u(t, x —|—/ d .
|| ||X7"3 re.7] <|| ( )HLP(Q) |y|2_2H y

X€ER

@ Define the stochastic convolution of a predictable process Z as

t
(p+ ZW)(t, x) = /0 /R Pr_s(x — ¥)Z(s.y)W(ds. dy).

Proposition
Foranyp > 2,

[P+ ZW)lxz < Cr.avBlZl 1z @)
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Sketch of the proof:
(i) Using Burkholder’s inequality,

[0 ZW) (t )]s
! 2
< ovp| [ [ (prestx=)Z(s.5) = prostx—y = 2)Z(s.y + 2)

1
2H—2 2
x|Zz| dydzds £

(i) The estimate follows using Minkowski’s inequality and Fourier transform
arguments.
(iii) In the same way we handle the term

/ [(p+ ZW) (t,x) — (p * ZW) (t, X + ¥) 1p(q) dy.

|y|272H
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Existence and uniqueness in the affine case

Theorem (Balan, Jolis, Quer-Sardanyons ’15)
Suppose that 1 < H < } and

(i) ug is bounded and H-Héblder continuous.

(i) o(u) = au + b.

Then, there is a unique mild solution to equation (1) in X2. Moreover,
the solution is L(2)-continuous and for each p > 2 it belongs to X*%.

v

@ If o is an affine function, then, if v and v are two solutions,

o(u(s,y)) —o(v(s,y) —a(u(s,y + z)) + o(v(s,y + 2))
= alu(s,y) — v(s,y) —u(s,y +z)+ v(s,y + 2)].
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A stochastic Young inequality

@ For p > 1 define

||u(t,-)—u(t,-+y)||2 QxR

2 2 LP(QXR)

ull2. = sup | |lu(t,- +/ dy | .
” ”zir’ e (” ( )”Lp(Qx]R) |y|2_2H y



A stochastic Young inequality

@ For p > 1 define

lu(t,-) = u(t,- + y)I
”u”z" = Sup (HU(t,')H%p(QxR)"'/R ly[2-2H Lp(QXR)d

Proposition

P
2

x ZW(t, x x* ZW(t, x + y)|?
(re[oﬂ/ |p ( ) P ( y)| dy) SCT,H,p”ZHZFT’ (3)

sy |y|2—2H

@ The proof is based on the convolution argument as in Gyongy-N. 99.
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Uniqueness of solutions

Theorem
Suppose that ; < H < } and:
(i) up € LP(R) for p > 718
(i) o has a Lipschitz derivative and #(0) = 0.

Then, if u and v are two solutions in the space Z2, for each t, x,
u(t, x) = v(t, x) almost surely.
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Main ingredients of the proof:

@ Given two solutions u, v, we need to estimate a double increment of the
form

lo(u(s, y)) —a(v(s,y) —o(u(s,y + 2)) + a(v(s,y + 2))|
< Clu(s,y) —v(s,y) —u(s,y +z) + v(s,y + 2)|
+Clu(s,y) — v(s,y)lllu(s,y) — u(s,y + 2)| +|v(s,y) — v(s,y + 2)|].

@ To handle the product term, we need a stopping time argument:

Ty = inf {0 <t<T: sup lu(s,y) — u(s,y + 2)|?|z]*F2dz > k}

0<s<tyeR JR

@ Using inequality (3) we can show that Ty 1 oo, a.s. as k — oc.
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Existence of solutions

Theorem
Suppose that o satisfies (ii) and uy satisfies:
(") Forp> 2=, Up € LP(R) N L>°(R) N CH(R) and
Jellto() = to(- + Yl ey ly12H 20y < oo.

Then there exists a unique solution in Z% n X%.

@ The proof uses a compactness argument on the set of probabilities in
space of continuous functions f € C([0, T] x R) such that

(8, %) = [y <1 |F(t, x +y) = £(t,%)||y|?"~2dy is finite and continuous and

forall R>0
lim sup |f(t, x+2)—F(t, x)—F(t, x+y)+(t, x+z+y)||y|?"2dy = 0.
2O weon Jlyist

David Nualart (Kansas University) Le Mans, October 6-9, 2015 13/26




Moment estimates

The solution satisfies

1 1 2
sup |u(t, x)llp@) < Cu, €XP (CTPHﬁ1_”!|0!!fip)
xXe
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Moment estimates

The solution satisfies

1 1 2
sup |u(t, x)llp@) < Cu, €XP (CTPHH1_”1|0!!fip)
xXe

and

3
Eu(t, x)? > CW exp (Ctﬁ;1_l140£’)
01| Loe

where o, = inf,cp ""(u‘f”.
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@ The upper bound follows from

1P+ 2W)lag, < CovBlZlng, (¥ 207F 4 Tnmio 4 pent’ToiH),

where forany p > 2, 0,¢ > 0,

lulle = supe*|u(t, x)])
€ t>0
XER

tesupe ( / lu(t,x +y) — utt, x>||%p(m|y|2”—2dy)

t>0
XER

1
2
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@ The upper bound follows from

Ip % ZW)llxz . < CovBIZlaz, (mg_ée_f b ThTEeE 4 mH—%e%—H) ,

where forany p > 2, 0,¢ > 0,

lullxe = supe lu(t, x)|mm)
€ t>0
XER
1

2
tesupe ( / lu(t,x +y) — utt, x)||ip(m|y|2”—2dy) .

t>0
XER

@ The lower bound follows from the Sobolev embedding inequality

[ 190+ ) = gLy 2y > elgl?,

LA(R)
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Parabolic Anderson model

Suppose o(u) = u, that is

ou_nitu W
ot 20x2 oxot’



Parabolic Anderson model

Suppose o(u) = u, that is

@—E@+u_azw (4)
ot 20x2 Oxot’

@ The random field v = log u satisfies formally the KPZ equation:

ov Kk d%v 18v+82W
oxot

ot 20x2 T 2Vox
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Wiener chaos expansion

@ For any fixed (t, x) the random variable u(t, x) admits the following
Wiener chaos expansion

(o}

u(t,x) = 3 (fal- 1))

n=0

where for each (¢, x), (-, t, X) is a symmetric element in H®".
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Wiener chaos expansion

@ For any fixed (t, x) the random variable u(t, x) admits the following
Wiener chaos expansion

u(t,x) = In(fal-, 1, x)),
n=0
where for each (t, x), f,(-, t, x) is a symmetric element in H®".

@ Taking into account that the It6 and Skorohod’s integrals coincide for
processes in Ay and using an iteration procedure, one can find

1
fn(31 y X1, .-+ Sp, Xn, t7 X) = mpt—sa(n) (X - Xo’(n))
e psa(2>—sa(1)(xa(2) - XO’(1))pSg(1) UO(XU(1)) )

where o denotes the permutation of {1,2, ..., n} such that
0<sy1) <+ < Sy < L.
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Theorem
Assume } < H < }. Suppose that for any a > 0,

/ =% |up(x)|dx < 0.
R

Then, there is a unique mild solution to equation (4).

David Nualart (Kansas University) Le Mans, October 6-9, 2015 18/26



Theorem
Assume } < H < }. Suppose that for any a > 0,

/ =% |up(x)|dx < 0.
R

Then, there is a unique mild solution to equation (4).

Sketch of the proof:
Suppose ug = 1.

@ |t suffices to show that
o CnthKvn(H—1)

STl t X e < D T < o
"0 = rnH+1)
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@ Using

n

cy 5 (
]-fn(S17£1,...,Sn,§n,t,X) = 2HH ESU(IH )IEU o +£U |

_IX( + +Eo‘ )

we obtain
2n

c5 _ 2 _
e n|)2 /[o ﬂn/RnHe wern=srolér-+6 g 1=2H geds

CZ H / / H(SO-(I-M Sq (i) )W: |77’ i1 |1_2Hd7]ds
(nl [0 f]" n i

02'}_,
2 /[]/ ot =So0) (|| 1=2H - |1y;_4|1=2H) didls.
0,87 JRrn i

Then, we use

2 1
e "N |77|2_4Hd77 — CS—§(3—4H)

and 3% < 1ifandonly if H > }
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Moment bounds

Theorem

Let ; < H < }, and consider the solution u to equation (4) with up = 1. Let
p > 2 be an integer. Then

exp(citpFr'—H) < E(u(t, x)P) < exp (cotpHiR!—H) .

@ These bounds coincide with those obtained in the case H > %

(Khoshnevisan et al.), and also with the upper bound in the case of a
general o.
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Proof of the upper bound:

@ It follows from the hypercontractivity property

ln(faC, £, X)) sy < (P = D)E N n(fal-, t. X)) 2 -

and the estimate
ch % 5"

In(fa(-, 8, o) K ———M8M8M8M8
[1n(fa(-s £, X))l 2 () [I’(nH+1)}

)

=

which yields

o0 n n
cz2p2l2 Kk 2
u(t, )| r@) < Z CEpriEn F < exp (cgle t;ﬂ*%),
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Proof of the lower bound:

@ We introduce an approximation of the noise given by
t
wie) = [ [ 1o pllsxwids. o).
@ Let u* be the solution to the approximate equation

t
U (%) = prtiox) + /0 / Pr_s(x — Y)UF(s.y) W¥(ds, dy).
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Proof of the lower bound:

@ We introduce an approximation of the noise given by

W= (p) = / / lp + (s, ) W(ds, dy).

@ Let u* be the solution to the approximate equation

t
U (%) = prtiox) + /0 / Pr_s(x — Y)UF(s.y) W¥(ds, dy).

Proposition (Feynman-Kac formula for the moments)
Foreachp > 2, E[u(t, x)P] = lim. 0 E[u*(t, x)P], and

E[u*(t, x)P] = Eg

1<i<j<p

where B is a p-dimensional Brownian motion independent of W.

exp (CZH > / e eE g z”dgdr)],

v
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@ Step 1: Include the diagonal elements:

t P 2
E[us(t, x)P] = Eg |exp c/ /6_552‘261551, l€|"2Hdedr — cptetT
o Jr .
Jj=1

@ Step 2: Reduce the expectation to the event:

A = { sup sup |B}| < 15‘2”},

1<j<po<r<t 3

which satisfies P(A.) > ce=¢=""'pt.

On A., assuming |¢| < 7", we have |38 eBré| > cp.
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@ Step 3: As a consequence

E[us(t,x)P] > exp (cpzta‘“‘H)2 - cpte”‘1) .

@ Step 4: Choosing ¢ = cpH(HLU and using
E[us(t, x)P] < E[u(t, x)?]

we get the desired bound.
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Spatial asymptotics
Work in progress with X. Chen, Y. Hu and S. Tindel

@ For t > 0 fixed, we claim that

H

(log R)~ 7 log (lmaé u(t, x)) = Cy (t&)™" ,

lim
R—oo x|<

almost surely, where
1 /
e =sup{ [ 17GHPIE 2" - 5 [ 1g'0oPa
g9 R R

and the supremum is over {g € L%(R) : ||g|l;zr) = 1,9’ € LA(R)}.

@ This means that v(f, x) = log u(t, x) (solution to the KPZ equation)

satisfies
. maxy<p V(t, )

R—oo  (log R) ™

Notethatﬁ =2iftH=1].

= Cy (16)77 .
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Thanks for your attention!

Bon anniversaire pour Vlad!
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